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Abstract

We illustrate the application of the hyperbolic model, which generalizes stan-

dard two-parameter dedicated-link models for communication costs in message-

passing environments, to four rather different distributed-memory architectures:

Ethernet NOW, FDDI NOW, IBM SP2, and Intel Paragon. We first evaluate

the parameters of the model from simple communication patterns. Then over-

all communication time estimates, which compare favorably with experimental

measurements, are deduced for the message traffic in a scientific application

code. For transformational computing on dedicated systems, for which mes-

sage traffic is describable in terms of a finite number of regular patterns, the

model offers a good compromise between the competing objectives of flexibility,

tractability, and reliability of prediction.

1This author's work was supported in part by NSF grant ECS-9527169, and by NASA contract NAS1-

19480 while the author was in residence at the Institute for Computer Applications in Science and Engi-

neering (ICASE),NASA Langley Research Center, Hampton, VA 23681-0001.





1 Introduction

Most communication models are based on an empirically inferred linear dependence of

the time needed to send a message between two communicating parties on the size of the

message. For example, various hardware and software overheads in a parallel environment

that are modeled by a fixed component, independent of the message size, and by a variable

component, proportional to the message size, are identified in [1, 3, 4, 8, 9]. However, such

models (with constant coefficients) cannot accommodate contention in a general fashion.

Schemes for partially avoiding contention in routing architectures (e.g., a hypercube in

[15]) and for obtaining probabilistic guarantees for propagation times are proposed, but the

problem of quantifying the effect of coexisting messages over the same link on the end-to-end

communication performance requires more attention.

The hyperbolic model [12, 13] is a variation on the two-parameter models. Its main

goal is to address in a uniform way the modularity increasingly present in modern parallel

computing environments, where a message path between two communicating parties crosses

multiple processing modules having dearly defined interfaces and distinct functionality. If

the twin parameters of every module on a message path are known (either by measurement

or functional specification), the hyperbolic model allows them to be combined by a set of

simple rules into a single pair of end-to-end parameters. In contrast to models that attempt

to globally characterize communication costs independently of data paths, the modular

hyperbolic representation is data-driven. It can take advantage of knowledge of connectivity

and component parameters along the communication paths to adapt the parameters to

specific patterns of communication.

2 The Hyperbolic Communication Model

Given a set of source nodes S, a set of destination nodes D, and a set of

messages M in a parallel processing environment such that:

1. every message in M is sent by a node in S to a node in D;

2. every node in S sends at least one message and all messages it sends are

in M;

3. every node in D receives at least one message and all messages it receives
are in M;

our goal is to estimate for every message in M: the time interval between the

sending and the delivery of a message.

This simply described task is rendered difficult in practice by the multilayeredness of

a communication network, by the possibility of contention between the messages, and by

message packetization. A message can be latency-bound or bandwidth-bound, depending

upon its size and packet granularity, and the layer of the network that is "critical" can

shift as message size varies, since each layer may have different latency and bandwidth

characteristics. In systems with message contention for network paths, the effective latency

and bandwidth seen by a given message can be functions of the other messages present.

This paper describes a means of deriving just such an effective overall pair of latency and



bandwidthparameters by algebraic combination rules of component-wise parameters. We

summarize the combination rules and show how they apply to a variety of communication

networks and message exchange patterns.

The sets D, S, and M determine the state of the communication system, which is

represented as a directed graph called a communication graph (CG). A CG has two types

of nodes: terminal nodes and internal nodes. The terminal nodes represent the end processes

that initiate the sending (source node) and receiving (destination node) of the data. Between

any pair of terminal nodes the data is passed in streams of bytes of various size, called

messages. An internal node or Communication Block (CB) is an abstract module that

embeds all the functions performed by the communication protocols in one or more layers

of software and hardware, in order to deliver data from source to destination. A CB

manipulates data in units of limited size, called packets. Consequently, passing a message

to a CB may result in splitting it into packets. We say that two or more CBs are dependent

if they share a common resource and therefore only one of them can process data at a given

moment, and independent otherwise. For example, two CBs running on different processors

are independent, while if they run on the same processor they are dependent.

The most important parameter characterizing a CB is the time required to process a

message of size x, called the total service time. We consider that the packet processing time

has two components: a .fixed service time that is independent of the packet size (e.g., the

overhead associated with memory management, interrupt processing and context switching,

the propagation delay) and an incremental service time that is proportional to the packet

size (e.g., data movement between different protocol layers, building and verifying of the

CRC or checksum, packet transmission on the communication network).

Let us consider a CB characterized by the following parameters: the maximum packet

size p (bytes), the fixed service time per packet a and the incremental service time per byte

m. Then the total service time t for a message of size x is given by the following equation:

t(x; a, m,p) = a[p] + rex, (1)

where Ix�p] is the number of packets of maximum size p being processed. We approximate

the total service time t with the following monotonically increasing continuous function

defined on the interval [0, c¢) (see Figure 1):

a 2

T(x;a,b)- +bx, (2)
aq-bx

where b --- a/p+ m. This is the equation of a hyperbola in the (x, t) plane, with a horizontal

tangent at x = 0 and an asymptote of slope b, hence the name of the model. The improve-

ment of (2) over a linear latency (a) / reciprocal transfer rate (fl) model, T(x; a,/3) = aTZx,

is not so much in the fit of a continuous curve to the sawtooth form of a packetized trans-

mission, but in the analytical simplicity with which the parameters (a, b) for a CG may be

derived in terms of its elemental CBs, as shown by the four combination rules in subsections

2.1 through 2.4. Using Ti to estimate the total service time required by CBi to process

a message of a given size, we derive rules for reducing n CBs interconnected in various

structures to a single equivalent CB , with service time T(al, bl, a2, b2,..., an, b,_). Evalu-

ating the reduced CG at extreme limits of message size and number of processors permits

extraction of the salient parameters for the individual CBs.
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Figure 1: The total service time t(x;a, m, p) versus the continuous function T(x; a, b) used

to approximate it (a = 1, m = 0.5 and p = 2).

A detailed discussion motivating the form of (2) and the combination rules is available

in [13].

2.1 Serial Interconnection

Definition 1 We say that n communication blocks CB{ (1 < i < n) are serially intercon-

nected with respect to a message m if every packet of m is processed sequentially by every
CB_.

Notice that this definition does not imply that a message is processed in its entirety

by one CB and only after that by the next CB. In fact, if the message is larger than the

maximum packet size and the CBs are independent, as soon as CB1 delivers a packet, CB2

can start to process it.

Rule 1 Given n serially interconnected communication blocks CBi(a{, b{), (1 < i < n), this

structure is equivalent to a single communication block C B(aj, bl) (for independent blocks)

or C B( aD, bD ) (for dependent blocks), where:

bD=l:b,.
/=1 i=1



2.2 Parallel Interconnection

Definition 2 We say that n communication blocks CBi (1 < i < n) are parallel intercon-

nected with respect to a message m if any packet of m can be processed by any C Bi.

Assuming that the packets are processed such that the total service time of the message

is minimized, we have the following reduction rule:

Rule 2 Given n parallel interconnected communication blocks CBi(ai, bi), (1 < i < n), this

structure is equivalent to a single communication block C B( aI, bi) (for independent blocks)

or C B(aD, bD) (for dependent blocks), where:
n

-Ial = aD =min{al,a2,...,an}; bi = ; bD = min{bl,b2,...,bn}.
i=1

We can summarize the modeling of serial and parallel interconnection on independent

and dependent CBs as follows. In the small message limit that governs the a parameter,

CBs in serial combine additively and CBs in parallel combine by taking the minimum. In

the large message limit that governs the b parameter, CBs in serial that are dependent

combine like resistors in series, and CBs in parallel that are independent combine like

resistors in parallel. The other two subcases obey a ma_ximum (serial, independent) or a

minimum (parallel, dependent) law in deriving the overall b.

2.3 Concurrent Message Processing

We now analyze the general case in which a CB simultaneously receives for processing n

messages ml, m2, ..., mn of sizes zl, z2, ..., z,,. We assume that CB processes messages

using an arbitrary policy, i.e., it first processes roll, next mi2, and last rain, where i_, ..., i,_

is a permutation of 1, ..., n. Since we cannot tell exactly when a particular message ml is

processed, we consider the time required to process mi being bounded by the time required

to process all messages, i.e., equivalent to the case in which mi is the last message being

processed.

Rule 3 A communication block C B(a, b) that processes n messages ml, m2, ..., mn of sizes

zl, x2, ..., xn, respectively, is equivalent to a structure of n independent communication

blocks CBI(al, bl), CB2(a2, b2), ..., CBn(an, bn) where every CBI processes the message

mi and has parameters:

V'n.
Xi

ai = ha; bi = b. ,.-,,=1
xi

2.4 The General Reduction Rule

The reduction rules are based on the assumption that the communication graph is identical

for both small (packet size) and very large messages. Although this is true for many cases,

for complex communication patterns this assumption is no longer valid (see the example

of a tree-based broadcast in [13]). We therefore have the following general reduction rule,

which interpolates hyperbolically between limiting cases:



Rule 4 (General Reduction Rule) Given two terminal nodes s and d such that s sends

a message m of size x to d, then the total service time for the message m is:

a2
T(x; a, b) - + bx,

a ÷bx

where a is the service time when sending a small message from s to d (x _ 0), while b is

the service time per data unit when sending a large message from s to d (x _ oc).

3 Communication Parameters

In principle, one can determine CB parameters a and b by considering the hardware char-

acteristics of the computation nodes and the communication network (e.g., the processor

speed, the memory access time, the internal bus speed, etc.) and the communication pro-

tocol implementation details (e.g., the number of times a data buffer is copied while passed

through various protocol layers, the algorithm used to compute the checksum, etc.). Al-

though this approach appears to allow accurate evaluation of CB parameters, it is hard to
apply in practice because of several factors:

Various layers of the communication architecture are embedded in the general purpose

operating systems running on the processing nodes. This makes them compete for

system resources with other processes in the multitasking environment. It also means

that various factors like interrupt processing, context switching, memory management,

etc., combined with hardware features like the presence of a cache memory system,
would have to be considered when trying to model the communication.

Systems may be heterogeneous (made up of machines from different vendors, with

different characteristics and running different operating systems).

Software packages, such as the support for communication between end processes (at

the application level), each having their own characteristics and introducing their own
overhead, would have to be represented in a detailed model.

For four distributed-memory computing systems, Ethernet NOW (Network of Worksta-

tions), FDDI NOW, the IBM SP2, and the Intel Paragon, we illustrate the combination

rules, and invert them to derive the salient parameters for individual CBs from convenient

end-to-end measurements of limiting cases.

3.1 Ethernet Network of Workstations

Let us consider a network of n identical workstations linked by a communication network

CBe(ac, bc). For simplicity, assume that the overheads for sending and receiving messages

are equal. Thus, all workstations are modeled by the same CB(aw, bw) irrespective of

whether a message is being sent or received. We consider two communication patterns.

For the first pattern, we measure the round-trip time between two workstations. Let

RTT(x) be the round-trip time measured for a message of size x. Then, by symmetry,

the transmission time of a message from one workstation to another, which is not directly



Figure 2: The communication graph and its equivalent CB for sending one message from

process 1 to process 2.
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Figure 3: The communication graph and its reduction to an equivalent CB for the case when

each process sends a message to all the other processes over an Ethernet network.

measurable on a single clock, is RTT(x)/2. Since, as shown in Figure 2, the corresponding

communication graph can easily be reduced (using Rule 1) to an equivalent communication

block CB(a, b), we have

RTT(O)
a - ---2aw+ac, (3)

2

b = lira RTT(X)=max{bw, be}.
x--. _¢ 2

The second pattern consists of every workstation sending/receiving a message to/from

all the other workstations. More precisely, given n workstations, each workstation sends

n - 1 messages of the same size to each other workstation, after which it waits to receive all

the messages addressed to it. Figure 3 depicts the communication pattern, as well as the

transformations for the communication graph involving sending one message from node 1

to node n. First, the original graph is reduced by using Rule 3 to an intermediate graph



I I /consisting of three modules: two modules CB_,,(aw, bw) which represent the end-nodes, and
! ! !

one CBc(ac, bc) representing the communication network. Since all the messages have the

same size, and since a workstation sends n- 1 messages and receives another n- 1 messages,

' 2(n- 1)a_o, ' 2(n 1)bw. Similarly, it is easy to see that theby Rule 3 we obtain a_ = b_ = -

total number of messages "injected" into the communication network (i.e., into block CB=)

is n(n- 1), and therefore we obtain: a_c= n(n- 1)at, btc= n(n- 1)be. Next, by using Rule

1 we reduce the intermediate communication block to one equivalent CB with the following
parameters:

a(n) = 4(n- 1)a_ + n(n- 1)a_, (4)

b(n) = max{(2(n- 1)b_,n(n- 1)b_},

where the parameters of the resulting CB are expressed as a function of the number of
nodes.

Since in a distributed network of workstations we do not have a global clock, we cannot

directly measure the time taken to send a message from workstation 1 to workstation n.

Instead, we synchronize all the workstations to begin transmission at the same time, and we

average the times measured on each workstation from the moment the first message is sent,

until the last one is receivedfl The decision to consider these times is motivated by the fact

that in an "ideal" system all the workstations will begin sending and will finish receiving at

the same time. Moreover, notice that this is in accordance with our assumptions made in

deriving Rule 3, i.e., when a CB processes concurrent messages we assume conservatively

that the message we are studying is the last one that is processed. Let T(x,n) be the

average time measured between the moment an workstation initiates the sending of the first

message, and the moment it receives the last message. Since, by Rule 4, T(0, n) = a(n),

and lim___.oo T(x,n)= b(n), from Eqs. (4) we obtain the following relations:

= lim a(n) - l]m T(O,n)
n(n- 1) n(n- 1)'

= lim b(n) _ lira
1) n-. o - 1)

(5)

Thus, if we have enough workstati.ons, by sending enough large messages, we should be

able to compute the communication network parameters from Eqs. (3) and (5). Unfortu-

nately, in practice we cannot use unlimited resources to compute these parameters exactly.

We remark, however, that it is easier to compute be accurately than ac. For computing bc

we use very large messages, and since the time to do the synchronization is much smaller

than the time required to send/receive such messages, we can neglect the synchronization

time even for a small number of workstations. In fact, in our Ethernet setting, we can

accurately compute be using only 3 workstations. This is not true when computing ac, since

the time to send a small message is comparable to the time to do the synchronization; in

fact, the synchronization is, itself, implemented by using very small messages. Therefore,

to accurately compute ac, we need a much larger number of nodes. In practice, as a rule

of thumb, we consider that we have enough workstations to compute the value of ac when

2The reason we take the average here is to account for the probabilistic behavior of the CSMA/CD

protocol employed by the Ethernet [10]; on all the other platforms (Sections 3.2, 3.3. and 3.4) we take the
maximum over the measured times.



addinga new workstation changes the value of ac by less than 5%. In our experiments we

use eight workstations for computing ac.

From Eq. (3), we can easily determine a_, and max{be, b_}, in addition to ac and be.
Note that if b_, is smaller than bc, then b_ is not directly available from these experiments.

However, this is not a problem in practice, since this means that when large messages are

sent, the communication network is always the bottleneck, and therefore b_ is "shadowed"

by be.

For a group of Sun SPARCstation 20s at ICASE running SunOS 4.1.3, using MPI (as

implemented in Argonne's MPICH [7]) as the communication layer, the parameters are:

ac = 250 lzsec,

bc = 0.95 #sec/byte,

a_ = 750/_sec,

b_ = 1.05/_sec/byte.

(6)

We note that 1�be is only about 10% slower than the theoretical peak performance of Eth-

ernet, virtually the same performance realization reported in [11] in a different workstation

environment. We expect the b_ parameter of the present workstations to be visible only

when there is low contention, since it is within a factor of two of be.

3.2 FDDI Network of Workstations

To determine the corresponding parameters for FDDI we use a similar experimental setting:

eight Sun SPARCstation 20s running SunOS 4.1.3, and using MPI on FDDI as the commu-

nication layer. Of the many differences between Ethernet and FDDI technology, the most

apparent to the user is FDDI's 100 Mb/sec peak bandwidth versus 10 Mb/sec for Ethernet.

By using the same two communication patterns, we can compute ac, be, and 2a_ + ac

in the same manner as above. However, it is much harder to compute ac accurately. The
reason is that the access time to the network in the FDDI case is much shorter than for

Ethernet, since there are no collisions to delay the packet transmission 3. In fact, it can be

shown that the maximum access time to the network, ac, is given by the propagation delay

of a token along the entire network. Since in our case, the length of the network is under

1000 meters, the ac should be less than 5 #sec, which is two orders of magnitude less than

the value of 2aw + ac. Therefore, we will simply neglect ac. With this, the parameters for

FDDI are:

ac = 5 _usec,

b_ = 0.11/_sec/byte,

a_ = 380 _sec,

b_ = 0.13#sec/byte.

(7)

The throughput for FDDI is one order of magnitude larger than for Ethernet, as expected.

However, we point out that these results were possible only after patching the MPICH

3Note that the access time here does not include the time that an workstation has to wait while the
communication network is used by another workstation, since this effect is already modeled in the hyperbolic
model by Rule 3.



release[7]of the MPI software.Specifically,wehadto increasethe sizeof the TCP frame
buffer, which is configuredthrough MPI, from 4 KB to 40 KB. After this change,the
throughputincreasedby a factorof almostfive.

3.3 IBM SP2

The SP2 communication architecture [14] is based on a high-performance (low latency, high

bandwidth) switching network called the High-Performance Switch. The topology consists

of non-switching nodes (mainly processors for our purpose) connected through a multistage

network of switching elements. Each element is a 4 x 4 bidirectional switch with 8 input
and 8 output ports.

Each node of an SP2 system belongs to a logical frame. A frame is a two-stage in-
terconnect that provides any permutation of 16 bidirectional links to/from 16 processors.

Multiple frames can be further interconnected, allowing full connectivity throughout the

resulting network. A property of this network is that for each pair of nodes there are at

least four possible paths (but not all of the same length), unless the nodes are attached to

the same switching element. Another observation is that the basic switching elements are

potential bottleneck points due to multiplexing of packets from multiple sources on their

limited resources. Thus, contention may occur for two message paths traversing the same

link (input port to output port) in a switch, with the side effects of increased delay and

reduced throughput due to buffering in the switch.

To determine the componentwise hyperbolic model parameters for the SP2 system 4, we

initially attempted to use the same communication patterns as for FDDI and Ethernet.

Unfortunately, we are not able to run the experiments for the second communication pat-

tern, in which every node is supposed to send messages to all the others, for large messages.
We suspect buffer overflow within the communication switch is the cause. This is not a

practical problem from the point of view of evaluating CB parameters, however; we simply

replace the second communication pattern with a new one in which each node sends/receives
a message to/from exactly one other node. s More precisely, consider 2n nodes numbered

from 1 to 2n, and let each node i from the first half send a message to the corresponding
node n + i from the second half, i = 1,2,...n.

Next, let us consider a pair of nodes that communicate with each other, such as nodes 1

and n+ 1. Then, we can determine the service time T(x, n) required to deliver a message of

size x from node 1 to node n÷l by reducing the initial communication graph to an equivalent

CB, as shown in Figure 4. It is easy to check that the communication parameters of the
resulting CB as a function of the number of nodes are:

a(n) = 2up (8)
b(n) = max{bp,nbc}.

Since T(O,n) = a(n) and limx--.ooT(x,n)= b(n), by using the Eq. (8) we can write:

4We ran our experiments on the NASA LaRC 48-node (wide-node) SP2 system.

5On the other hand, we were not able to use the same sparse communication pattern for the Ethernet

NOW and FDDI NOW, since the number of workstations available was insufficient to produce the commu-

nication bottleneck that determines the ae and be parameters (see (5)).

9
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each process with indez i (i <_ n) sends a message to the process with index n + i.

ac = lira T(O,n), (9)
_ --_ o0 n

bc = lira lim_-.ooT(x,n) (10)
_---*OO n

By the nature of its interconnection topology, bisection bandwidth in an SP2 system
increases with the number of nodes• This is different from FDDI and Ethernet, where the

communication bandwidth is independent of the number of nodes• (In fact, for Ethernet,

the bandwidth might slightly decrease as we add more nodes due to the increasing number

of collisions.) Thus, the CBc parameters for SP2 are dependent on the interconnection

topology•
In the remainder of this subsection we consider two basic configurations, one with 14

nodes located on the same frame 6, and the other with 28 nodes equally divided among two

frames• Since each frame provides any permutation of 16 bidirectional links, in the first

case we can assume that each pair of nodes communicates through its own communication

channel. Since there are seven such pairs, bc can be simply written as bd7 , where bz denotes

the inverse of an individual channel bandwidth. By performing measurements for messages

as large as 0.5MB, we obtain b(7) = max{bp, 7be} = max{bp, bt} = 0.029 #sec/byte. Also,

by measuring the round-trip time for very short messages we obtain 2a v + ac = 124/_sec.

In the second case, we consider 14 processors located on one frame that communi-

cate with 14 processors located on another frame• Since, as shown in [14], there are only

eight communication channels available between two adjacent frames, the overall band-
width will not increase when the number of pairs that communicate between frames ex-

ceeds eight. Thus, the overall value of b_ in this case should be bl/8, for any number

eWe avoid using the base nodes in each frame because they paxticipate in other facility-wide networks

(FDDI, HiPPI, Ethernet) in addition to the internal network.

10



of pairs greater or equal to eight. Finally, since there are 14 pairs of processors, we

have b(14) = max{bp, 14be} = max{bp,7bl/4}. According to our measurements we ob-

tain b(14) = 0.049 ktsec/byte. Now notice that since from the previous experiment b(7) =

0.029/_sec/byte, bp cannot be larger than 7bd4 , and therefore we have bl = 0.028 #sec/byte.

Since this value is very close to the one obtained for b(7), we will assume that bz = 0.29,

and that bp is less or equal to bl.

The values above are very close to those found in various technical papers describing the

architecture and the performances of SP2 communication system, and of the MPI package

running on SP2 [2]. In fact, the corresponding parameters quoted in [14] are:

ac = 5- 35/zsec,

bz = 0.0285/zsec/byte,

ap = 40/zsec,

bp = 0.025 #sac/byte.

(11)

which are consistent with those we measure via the hyperbolic model, i.e., bt = 0.029/_sec/byte,

and 2ap + ac = 124/zsec.

3.4 Intel Paragon

The Intel Paragon communication architecture is based on a rectangular 2-D mesh inter-

connection network. Each computing node is attached to an associated communication

processor through a private bidirectional communication link. Every communication pro-

cessor is connected with other four adjacent communication processors over bidirectional

network channels. It implements wormhole routing functions by forwarding packets received

on incoming links from its neighbors and from its attached computing node.

CBt

[

CB

V

CBt

-7...r

CB_

,

CB

-Tr-
CBc

) Rule 3

,)
"7 Rttlc 1

=:>
7

,) ¢,)

CBe

7 r-7

! !

Figure 5: The communication graph and its reduction to an equivalent CB for the case

when each process with the index i (i <_ n) sends a message to the process with the index

2n-i+l.
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To determine the Paragon 7 parameters we use the same communication patterns as for

the SP2. In our experiments, all the processing nodes involved in the communication are

placed along the same row of the communication mesh. In this way we are able to maximize

contention since all the messages are sent along the communication links corresponding to

that row, according to the X-Y routing policy of the Paragon. Figure 5 shows the original

communication graph as well as the derivation of the equivalent CB involving the end-nodes

n and n + 1. The communication blocks CBc model the communication processors that

perform routing functions. Since n messages pass through the corresponding CBcs of nodes

n and n + 1, the resulting communication parameters for the equivalent CB are:

a(n) = 2% +2nat, (12)

By denoting the time required to send a message of size x between two end-nodes as

T(x, n), we obtain from Eq. (12) that

a_ = lira T(O,n) (13)
n--._ 2n '

b_ = lira lim_:_ T(x, n) (14)
n--_oo n

By using similar observations as in the SP2 case we determine the following parameters:

ap +ac = 120 #sec, (15)

bc = 0.012#sec/byte,

bp = 0.031 #sec/byte.

Again, we cannot isolate ac because it is not possible to achieve a bottleneck for very small

messages.

4 Test Application

A model parallel scientific application originally written for the Intel Hypercube by Hor-

ton [5] and rewritten to take advantage of the multiplatform implementation of the MPI

standard is instrumented and used as a test program for the hyperbolic model. A multi-

grid (MG) code for transient flow in a cavity with an oscillating lid was chosen among
conveniently available codes for its simplicity and for its scaling properties in communica-

tion requirements. We describe the application just sufficiently to expose the leading-order

communication complexity and to appreciate its general context. To verify the accuracy of

our model, we select for graphical comparison estimates of the communication times and

corresponding measurements. The estimates derive from the archetypal communication

operations as described in [13], with parameters evaluated for each platform as in section 3.

rWe ran our experiments on the NASA LaRC 72-node Paragon system.
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4.1 Multigrid

The model application is transient simulation of incompressible Navier-Stokes flow in a

two-dimensional square cavity filled with fluid, driven by a sinusoidally oscillating rigid

lid. The numerical method is based on a standard uniform-grid spatial discretization and

implicit time discretization for a velocity-pressure formulation of Navier-Stokes with a hy-

brid space-parallel/time-parallel multigrid (MG) solver. A MG solver uses a succession of

grids presenting different refinements of the same problem, in order to iteratively damp the

component of the error at each wavenumber on the grid for which its particular damping

factor is most rapid, rather than damping all error components on the same grid. Space

parallelism is achieved through domain partitioning, with one processor per subdomain;

we permit both stripwise and boxwise decomposition in order to obtain more flexibility in

the number of subdomains while still preserving the uniformity of each subdomain. Time

parallelism is achieved by assigning identically spatially decomposed time planes to disjoint

sets of processors. The motivation for time parallelism is the degradation of efficiency in

space parallelism that is due both to degrading perimeter-to-area (or surface-to-volume) ra-

tios of conventional implicit methods, and to degrading convergence rate as global coupling

is sacrificed in the MG "smoothers" which is the error-reducing operation at the heart of

MG, performed on a partition of a grid at a given refinement level. The effectiveness of

time parallelism is physically counter-intuitive because of causality. Nonetheless, it is more

effective than space parallelism in many practical physical and numerical parameter ranges,

when time-accurate resolution of a transient flow is required.

In the limit of pure time parallelism, p processors work concurrently on p different

time planes of the transient solution. In the limit of pure space parallelism, only one

time plane is computed at a time. Multigrid is used in the spatial direction only; there is

no time coarsening. (Time coarsening is worthy of attention in other contexts (see, e.g.,

[6]), but is irrelevant to our immediate purpose for this application, namely to introduce a

communication complexity that scales to the same asymptotic order in problem size as the

computation complexity.)

The communication patterns and the amount of traffic vary with the allocation of avail-

able processors between space and time, as well as with the refinement of the spatial grid,

with the result that a wide range of message sizes, message numbers and message patterns

are observed, depending on three factors: the number of physical time steps simultaneously

solved for, the number of domain partitions, and the number of spatial coarsening levels.

The most important observation about the computation and communication complexity,

however, is that their asymptotic sizes are of equal order. Consider the purely time parallel

limit of p planes of n x n gridpoints. Transferring the full plane of data between time

levels is an O(n _) operation, which is the same as the O(n 2) arithmetic complexity of the

stencil operations of residual evaluation and ILU smoothing in the fine grid sweep of the

MG algorithm.

4.2 Communication Parameters

In this section we present the derivations of the communication parameters for the traffic

consisting of inter-plane grid transfers which, as shown before, is dominant in overall com-

munication complexity. On a homogeneous set of processors this dominant pattern should
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exhibitcontentionsinceall transferswill start at "almost"the sametime.

Figure 6 shows the communication graphs corresponding to this communication pattern

for Ethernet/FDDI, IBM SP2, and Intel Paragon, as well as the reduction to an equivalent
CB. In the case of the SP2 we assume that every pair of nodes communicates through a

"dedicated" link (represented by CBz). It is, in fact, possible to arrange that consecutive
nodes be allocated on the same frame, which drastically reduces the inter-frame commu-

nication load. On the other hand, recall that for the processing nodes that reside on the

same frame, the communication bottleneck is not a problem, since the SP2 communication

system ensures 16 communication links per frame.
Table 1 shows the expressions of the communication parameters for the intermediate

communication graph, as well as for the final CB. These parameters are computed for the

bi-directional case where neither nodes i nor i + 1 are associated with the first or last planes

(i.e., i = 2, 3,..., n - 2). For the first and last planes, communication is uni-directional

only, the parameters can be computed in the same manner.

Edlcmc_DDI

IBM SP-2

In_l PmRon

cB%

[----7
L___]

Figure 6: The communication graph and its reduction to an equivalent CB for the main

communication pattern induced by the multigrid application in the time-parallel limit for:

Ethernet/FDDI, IBM SP2 and Intel Paragon

4.3 Experimental Data

We have ported the multigrid application to all four platforms evaluated in Section 3: Ether-

net NOW, FDDI NOW, IBM SP2, and Intel Paragon. Since it is available on all platforms,
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Architecture
g

a c

CBCB' 
b

max{2b., (n - 1)be)Ethernet/FDDI 2 a_ 2 b_

IBM SP2 2 ap 2 bp
Intel Paragon 2 ap 2 bp

(n-1)ac (n-1)be
az b_
2 ae 2 be

4a_o + (n - 1)ae

4 ap + at max{2bp, bt}
4 ap + 2 ae max{2bp, 2be}

Table 1: The communication parameters for the CBs shown in Figure 6.

we use MPI as the communication library. To predict the overall communication times,

we use the hyperbolic model to estimate the times for the basic communication pattern,

by reducing the corresponding communication graphs (see Figure 6) to an equivalent CB,
whose parameters were computed based on the values determined in Section 3.

For Ethernet and FDDI we run the experiments on up to 8 SUN SPARCstation 20s. For

the SP2 and Paragon, in choosing the maximum numbers of nodes, our goal is to minimize

as much as possible the interference of other users. Therefore, on the SP2 we run the

experiments by using up to the maximum number of processors on a frame (i.e., 16), while
for Paragon we run the experiments on up to 12 nodes, since this is the maximum number

of nodes we can allocate along a mesh column. (By allocating all the nodes on one side of

the mesh we eliminate any potential interference.)

Figure 7 shows the predicted versus the measured values for the total communication

times corresponding to one iteration in the algorithm. We note that for FDDI NOW, IBM

SP2, and Intel Paragon the predicted data are within 20% of the measurements, with the
exception of the experiment running on seven processors on FDDI. We believe that this was

primarily due to communication interference from other workstations on the same subnet.

(We reserved only the individual workstations; we could not reserve the entire subnet.)

Upon running multiple tests, we expect, statistically, to draw the 7-processor point down
to the rest of the curve.

On the other hand, for Ethernet the difference between the predicted data and the mea-

surements (the "asynchronous" curve) is much larger and tends to increase with the number

of processors. The main reason is that the hyperbolic model assumes that all processors

send data at the same time, which yields theoretically an upper bound on the commu-

nication time. While the multigrid application is inherently synchronous, in practice the

probabilistic protocol employed by Ethernet "destroys" the synchronicity. This is because

at the beginning of each iteration all workstations attempt to send messages "almost" at the

same time, and therefore the probability of collision is high. When a workstation detects

such a collision, it backs off and waits for a random amount of time [10], before retrying

to send the message. In time, this results in workstations sending out messages at slightly

staggered intervals. Consequently, the degree of overlap between messages sent by differ-

ent processors is much lower than is assumed in the model, which results in the observed

communication time discrepancy. For validation purposes, we can change the algorithm to

force synchronization at intermediate points during an iteration. As shown in Figure 7, the

measured overall communication time in this case (the "synchronous" curve) is very close
to the predicted value.

The key contrast between the NOWs and the tightly-coupled machines, as predicted
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Figure 7: Predicted versus measured communication times for: (a) Ethernet NOW, (b)

FDDI NOW, (c) IBM SP2, (d) Intel Paragon.

by the model and as borne out in the experiments, is in the asymptotic behavior of the

communication time with respect to the number of processors. For the NOWs it is linear,
since the communication network is a shared resource of limited capacity: adding more

nodes decreases the share of communication bandwidth allocated to each processor, and

the communication time consequently increases. On the other hand, for the SP2 and the

Paragon, the communication times remain practically constant as the number of nodes

increases. This is expected from the scalability of the communication subsystems employed

by these platforms.

The difference in the time to complete the communication in going from two to three

processors for the SP2 and the Paragon is due to the fact that for more than two processors

there is at least one processor (the one in the middle) which both sends and receives data.

On the other hand, in the two-processor case each processor either sends or receives (but

not both), which reduces by nearly half the overall message processing time at the end
nodes.
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5 Conclusions

The two-parameter hyperbolic model [12, 13] for parallel communication complexity on

general dedicated networks has been applied, using a uniform set of rules, to different

communication architectures, including dusters of workstations and dedicated parallel ma-

chines. Under different message topologies on each platform the rules reduce to different

analytical expressions of overall communication parameters. Sample experimental proce-
dures for deriving parameters of elemental communication blocks are demonstrated. The

model has proved to be flexible and reasonably accurate in predicting the communication

times on a variety of distributed-memory systems in the context of a real-world application.
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